
High-level advice and guidelines for

High-level advice and guidelines for

High-level advice and guidelines forHigh-level advice and guidelines for
writing sane, manageable, scalable CSS

writing sane, manageable, scalable CSS

writing sane, manageable, scalable CSSwriting sane, manageable, scalable CSS

Give us four hours for a full Siebel Review to solve OM crashes. Only $1K.
ads via Carbon

About the Author

About the Author

About the AuthorAbout the Author

CSS Guidelines is a document by me, Harry Roberts. I am a Consultant Front-

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 1 of 73

end Architect from the UK, and I help companies all over the world write and
manage better quality UIs for their products and teams. I am available for hire.

Follow me on Twitter or Hire Me

Support the Guidelines

Support the Guidelines

Support the GuidelinesSupport the Guidelines

CSS Guidelines is provided through a pay-what-you-like model—from $0
upward. If CSS Guidelines is useful to you or your team, please consider
supporting it.

Support the Guidelines

Get updates about changes, additions, and new and upcoming sections by
following @cssguidelines on Twitter.

Contents

Contents

ContentsContents

Introduction
The Importance of a Styleguide
Disclaimers

Syntax and Formatting
Multiple Files
Table of Contents

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 2 of 73

80 Characters Wide
Titling
Anatomy of a Ruleset
Multi-line CSS
Indenting

Indenting Sass
Alignment

Meaningful Whitespace
HTML

Commenting
High-level

Object–Extension Pointers
Low-level
Preprocessor Comments
Removing Comments

Naming Conventions
Hyphen Delimited
BEM-like Naming

Starting Context
More Layers
Modifying Elements

Naming Conventions in HTML
JavaScript Hooks

data-* Attributes
Taking It Further

CSS Selectors
Selector Intent
Reusability
Location Independence
Portability

Quasi-Qualified Selectors
Naming

Naming UI Components
Selector Performance

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 3 of 73

The Key Selector
General Rules

Specificity
IDs in CSS
Nesting
!important
Hacking Specificity

Architectural Principles
High-level Overview
Object-orientation
The Single Responsibility Principle
The Open/Closed Principle
DRY
Composition over Inheritance
The Separation of Concerns

Misconceptions

Up Next

Up Next

Up NextUp Next

Preprocessors
Layout
Performance
Sanity, Simplicity
Code Smells
Legacy, Hacks, and Technical Debt

Introduction

Introduction

IntroductionIntroduction

CSS is not a pretty language. While it is simple to learn and get started with, it
soon becomes problematic at any reasonable scale. There isn’t much we can do

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 4 of 73

to change how CSS works, but we can make changes to the way we author and
structure it.

In working on large, long-running projects, with dozens of developers of
differing specialities and abilities, it is important that we all work in a unified
way in order to—among other things—

keep stylesheets maintainable;
keep code transparent, sane, and readable;
keep stylesheets scalable.

There are a variety of techniques we must employ in order to satisfy these
goals, and CSS Guidelines is a document of recommendations and approaches
that will help us to do so.

The Importance of a Styleguide

The Importance of a Styleguide

The Importance of a StyleguideThe Importance of a Styleguide

A coding styleguide (note, not a visual styleguide) is a valuable tool for teams
who

build and maintain products for a reasonable length of time;
have developers of differing abilities and specialisms;
have a number of different developers working on a product at any given
time;
on-board new staff regularly;
have a number of codebases that developers dip in and out of.

Whilst styleguides are typically more suited to product teams—large codebases
on long-lived and evolving projects, with multiple developers contributing
over prolonged periods of time—all developers should strive for a degree of
standardisation in their code.

A good styleguide, when well followed, will

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 5 of 73

set the standard for code quality across a codebase;
promote consistency across codebases;
give developers a feeling of familiarity across codebases;
increase productivity.

Styleguides should be learned, understood, and implemented at all times on a
project which is governed by one, and any deviation must be fully justified.

Disclaimers

Disclaimers

DisclaimersDisclaimers

CSS Guidelines is a styleguide; it is not the styleguide. It contains
methodologies, techniques, and tips that I would firmly recommend to my
clients and teams, but your own tastes and circumstances may well be
different. Your mileage may vary.

These guidelines are opinionated, but they have been repeatedly tried, tested,
stressed, refined, broken, reworked, and revisited over a number of years on
projects of all sizes.

Syntax and Formatting

Syntax and Formatting

Syntax and FormattingSyntax and Formatting

One of the simplest forms of a styleguide is a set of rules regarding syntax and
formatting. Having a standard way of writing (literally writing) CSS means that
code will always look and feel familiar to all members of the team.

Further, code that looks clean feels clean. It is a much nicer environment to
work in, and prompts other team members to maintain the standard of
cleanliness that they found. Ugly code sets a bad precedent.

At a very high-level, we want

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 6 of 73

four (4) space indents, no tabs;
80 character wide columns;
multi-line CSS;
meaningful use of whitespace.

But, as with anything, the specifics are somewhat irrelevant—consistency is
key.

Multiple Files

Multiple Files

Multiple FilesMultiple Files

With the meteoric rise of preprocessors of late, more often is the case that
developers are splitting CSS across multiple files.

Even if not using a preprocessor, it is a good idea to split discrete chunks of
code into their own files, which are concatenated during a build step.

If, for whatever reason, you are not working across multiple files, the next
sections might require some bending to fit your setup.

Table of Contents

Table of Contents

Table of ContentsTable of Contents

A table of contents is a fairly substantial maintenance overhead, but the
benefits it brings far outweigh any costs. It takes a diligent developer to keep a
table of contents up to date, but it is well worth sticking with. An up-to-date
table of contents provides a team with a single, canonical catalogue of what is
in a CSS project, what it does, and in what order.

A simple table of contents will—in order, naturally—simply provide the name
of the section and a brief summary of what it is and does, for example:

/**
 * CONTENTS
 *

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 7 of 73

 * SETTINGS
 * Global...............Globally-available variables and config.
 *
 * TOOLS
 * Mixins...............Useful mixins.
 *
 * GENERIC
 * Normalize.css........A level playing field.
 * Box-sizing...........Better default `box-sizing`.
 *
 * BASE
 * Headings.............H1–H6 styles.
 *
 * OBJECTS
 * Wrappers.............Wrapping and constraining elements.
 *
 * COMPONENTS
 * Page-head............The main page header.
 * Page-foot............The main page footer.
 * Buttons..............Button elements.
 *
 * TRUMPS
 * Text.................Text helpers.
 */

Each item maps to a section and/or include.

Naturally, this section would be substantially larger on the majority of
projects, but hopefully we can see how this section—in the master stylesheet
—provides developers with a project-wide view of what is being used where,
and why.

80 Characters Wide

80 Characters Wide

80 Characters Wide80 Characters Wide

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 8 of 73

Where possible, limit CSS files’ width to 80 characters. Reasons for this include

the ability to have multiple files open side by side;
viewing CSS on sites like GitHub, or in terminal windows;
providing a comfortable line length for comments.

/**
 * I am a long-form comment. I describe, in detail, the CSS that follows. I am
 * such a long comment that I easily break the 80 character limit, so I am
 * broken across several lines.
 */

There will be unavoidable exceptions to this rule—such as URLs, or gradient
syntax—which shouldn’t be worried about.

Titling

Titling

TitlingTitling

Begin every new major section of a CSS project with a title:

/*------------------------------------*\
 #SECTION-TITLE
------------------------------------/

.selector {}

The title of the section is prefixed with a hash (#) symbol to allow us to
perform more targeted searches (e.g. grep, etc.): instead of searching for just
SECTION-TITLE—which may yield many results—a more scoped search of
#SECTION-TITLE should return only the section in question.

Leave a carriage return between this title and the next line of code (be that a
comment, some Sass, or some CSS).

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 9 of 73

If you are working on a project where each section is its own file, this title
should appear at the top of each one. If you are working on a project with
multiple sections per file, each title should be preceded by five (5) carriage
returns. This extra whitespace coupled with a title makes new sections much
easier to spot when scrolling through large files:

/*------------------------------------*\
 #A-SECTION
------------------------------------/

.selector {}

/*------------------------------------*\
 #ANOTHER-SECTION
------------------------------------/

/**
 * Comment
 */

.another-selector {}

Anatomy of a Ruleset

Anatomy of a Ruleset

Anatomy of a RulesetAnatomy of a Ruleset

Before we discuss how we write out our rulesets, let’s first familiarise
ourselves with the relevant terminology:

[selector] {

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 10 of 73

 [property]: [value];
 [<--declaration--->]
}

For example:

.foo, .foo--bar,

.baz {
 display: block;
 background-color: green;
 color: red;
}

Here you can see we have

related selectors on the same line; unrelated selectors on new lines;
a space before our opening brace ({);
properties and values on the same line;
a space after our property–value delimiting colon (:);
each declaration on its own new line;
the opening brace ({) on the same line as our last selector;
our first declaration on a new line after our opening brace ({);
our closing brace (}) on its own new line;
each declaration indented by four (4) spaces;
a trailing semi-colon (;) on our last declaration.

This format seems to be the largely universal standard (except for variations in
number of spaces, with a lot of developers preferring two (2)).

As such, the following would be incorrect:

.foo, .foo--bar, .baz

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 11 of 73

{
 display:block;
 background-color:green;
 color:red }

Problems here include

tabs instead of spaces;
unrelated selectors on the same line;
the opening brace ({) on its own line;
the closing brace (}) does not sit on its own line;
the trailing (and, admittedly, optional) semi-colon (;) is missing;
no spaces after colons (:).

Multi-line CSS

Multi-line CSS

Multi-line CSSMulti-line CSS

CSS should be written across multiple lines, except in very specific
circumstances. There are a number of benefits to this:

A reduced chance of merge conflicts, because each piece of functionality
exists on its own line.
More ‘truthful’ and reliable diffs, because one line only ever carries one
change.

Exceptions to this rule should be fairly apparent, such as similar rulesets that
only carry one declaration each, for example:

.icon {
 display: inline-block;
 width: 16px;
 height: 16px;
 background-image: url(/img/sprite.svg);
}

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 12 of 73

.icon--home { background-position: 0 0 ; }

.icon--person { background-position: -16px 0 ; }

.icon--files { background-position: 0 -16px; }

.icon--settings { background-position: -16px -16px; }

These types of ruleset benefit from being single-lined because

they still conform to the one-reason-to-change-per-line rule;
they share enough similarities that they don’t need to be read as
thoroughly as other rulesets—there is more benefit in being able to scan
their selectors, which are of more interest to us in these cases.

Indenting

Indenting

IndentingIndenting

As well as indenting individual declarations, indent entire related rulesets to
signal their relation to one another, for example:

.foo {}

 .foo__bar {}

 .foo__baz {}

By doing this, a developer can see at a glance that .foo__baz {} lives inside
.foo__bar {} lives inside .foo {}.

This quasi-replication of the DOM tells developers a lot about where classes
are expected to be used without them having to refer to a snippet of HTML.

Indenting Sass

Indenting Sass

Indenting SassIndenting Sass

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 13 of 73

Sass provides nesting functionality. That is to say, by writing this:

.foo {
 color: red;

 .bar {
 color: blue;
 }

}

…we will be left with this compiled CSS:

.foo { color: red; }

.foo .bar { color: blue; }

When indenting Sass, we stick to the same four (4) spaces, and we also leave a
blank line before and after the nested ruleset.

N.B. Nesting in Sass should be avoided wherever possible. See the Specificity
section for more details.

Alignment

Alignment

AlignmentAlignment

Attempt to align common and related identical strings in declarations, for
example:

.foo {
 -webkit-border-radius: 3px;
 -moz-border-radius: 3px;
 border-radius: 3px;

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 14 of 73

}

.bar {
 position: absolute;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 margin-right: -10px;
 margin-left: -10px;
 padding-right: 10px;
 padding-left: 10px;
}

This makes life a little easier for developers whose text editors support column
editing, allowing them to change several identical and aligned lines in one go.

It looks like you’re enjoying these guidelines…

Support Them

Meaningful Whitespace

Meaningful Whitespace

Meaningful WhitespaceMeaningful Whitespace

As well as indentation, we can provide a lot of information through liberal and
judicious use of whitespace between rulesets. We use:

One (1) empty line between closely related rulesets.
Two (2) empty lines between loosely related rulesets.
Five (5) empty lines between entirely new sections.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 15 of 73

For example:

/*------------------------------------*\
 #FOO
------------------------------------/

.foo {}

 .foo__bar {}

.foo--baz {}

/*------------------------------------*\
 #BAR
------------------------------------/

.bar {}

 .bar__baz {}

 .bar__foo {}

There should never be a scenario in which two rulesets do not have an empty
line between them. This would be incorrect:

.foo {}
 .foo__bar {}

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 16 of 73

.foo--baz {}

HTML

HTML

HTMLHTML

Given HTML and CSS’ inherently interconnected nature, it would be remiss of
me to not cover some syntax and formatting guidelines for markup.

Always quote attributes, even if they would work without. This reduces the
chance of accidents, and is a more familiar format to the majority of
developers. For all this would work (and is valid):

<div class=box>

…this format is preferred:

<div class="box">

The quotes are not required here, but err on the safe side and include them.

When writing multiple values in a class attribute, separate them with two
spaces, thus:

<div class="foo bar">

When multiple classes are related to each other, consider grouping them in
square brackets ([and]), like so:

<div class="[box box--highlight] [bio bio--long]">

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 17 of 73

This is not a firm recommendation, and is something I am still trialling myself,
but it does carry a number of benefits. Read more in Grouping related classes in
your markup.

As with our rulesets, it is possible to use meaningful whitespace in your HTML.
You can denote thematic breaks in content with five (5) empty lines, for
example:

<header class="page-head">
 ...
</header>

<main class="page-content">
 ...
</main>

<footer class="page-foot">
 ...
</footer>

Separate independent but loosely related snippets of markup with a single
empty line, for example:

<ul class="primary-nav">

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 18 of 73

 <li class="primary-nav__item">
 Home

 <li class="primary-nav__item primary-nav__trigger">
 About

 <ul class="primary-nav__sub-nav">
 Products
 Company

 <li class="primary-nav__item">
 Contact

This allows developers to spot separate parts of the DOM at a glance, and also
allows certain text editors—like Vim, for example—to manipulate empty-line-
delimited blocks of markup.

Further Reading

Further Reading

Further ReadingFurther Reading

Grouping related classes in your markup

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 19 of 73

Commenting

Commenting

CommentingCommenting

The cognitive overhead of working with CSS is huge. With so much to be aware
of, and so many project-specific nuances to remember, the worst situation
most developers find themselves in is being the-person-who-didn’t-write-
this-code. Remembering your own classes, rules, objects, and helpers is
manageable to an extent, but anyone inheriting CSS barely stands a chance.

CSS needs more comments.

As CSS is something of a declarative language that doesn’t really leave much of
a paper-trail, it is often hard to discern—from looking at the CSS alone—

whether some CSS relies on other code elsewhere;
what effect changing some code will have elsewhere;
where else some CSS might be used;
what styles something might inherit (intentionally or otherwise);
what styles something might pass on (intentionally or otherwise);
where the author intended a piece of CSS to be used.

This doesn’t even take into account some of CSS’ many quirks—such as
various sates of overflow triggering block formatting context, or certain
transform properties triggering hardware acceleration—that make it even
more baffling to developers inheriting projects.

As a result of CSS not telling its own story very well, it is a language that really
does benefit from being heavily commented.

As a rule, you should comment anything that isn’t immediately obvious from
the code alone. That is to say, there is no need to tell someone that color:
red; will make something red, but if you’re using overflow: hidden; to clear
floats—as opposed to clipping an element’s overflow—this is probably
something worth documenting.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 20 of 73

High-level

High-level

High-levelHigh-level

For large comments that document entire sections or components, we use a
DocBlock-esque multi-line comment which adheres to our 80 column width.

Here is a real-life example from the CSS which styles the page header on CSS
Wizardry:

/**
 * The site’s main page-head can have two different states:
 *
 * 1) Regular page-head with no backgrounds or extra treatments; it just
 * contains the logo and nav.
 * 2) A masthead that has a fluid-height (becoming fixed after a certain point)
 * which has a large background image, and some supporting text.
 *
 * The regular page-head is incredibly simple, but the masthead version has some
 * slightly intermingled dependency with the wrapper that lives inside it.
 */

This level of detail should be the norm for all non-trivial code—descriptions of
states, permutations, conditions, and treatments.

Object–Extension Pointers

Object–Extension Pointers

Object–Extension PointersObject–Extension Pointers

When working across multiple partials, or in an OOCSS manner, you will often
find that rulesets that can work in conjunction with each other are not always
in the same file or location. For example, you may have a generic button object
—which provides purely structural styles—which is to be extended in a
component-level partial which will add cosmetics. We document this
relationship across files with simple object–extension pointers. In the object file:

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 21 of 73

/**
 * Extend `.btn {}` in _components.buttons.scss.
 */

.btn {}

And in your theme file:

/**
 * These rules extend `.btn {}` in _objects.buttons.scss.
 */

.btn--positive {}

.btn--negative {}

This simple, low effort commenting can make a lot of difference to developers
who are unaware of relationships across projects, or who are wanting to know
how, why, and where other styles might be being inherited from.

Low-level

Low-level

Low-levelLow-level

Oftentimes we want to comment on specific declarations (i.e. lines) in a ruleset.
To do this we use a kind of reverse footnote. Here is a more complex comment
detailing the larger site headers mentioned above:

/**
 * Large site headers act more like mastheads. They have a faux-fluid-height
 * which is controlled by the wrapping element inside it.
 *
 * 1. Mastheads will typically have dark backgrounds, so we need to make sure

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 22 of 73

 * the contrast is okay. This value is subject to change as the background
 * image changes.
 * 2. We need to delegate a lot of the masthead’s layout to its wrapper element
 * rather than the masthead itself: it is to this wrapper that most things
 * are positioned.
 * 3. The wrapper needs positioning context for us to lay our nav and masthead
 * text in.
 * 4. Faux-fluid-height technique: simply create the illusion of fluid height by
 * creating space via a percentage padding, and then position everything over
 * the top of that. This percentage gives us a 16:9 ratio.
 * 5. When the viewport is at 758px wide, our 16:9 ratio means that the masthead
 * is currently rendered at 480px high. Let’s…
 * 6. …seamlessly snip off the fluid feature at this height, and…
 * 7. …fix the height at 480px. This means that we should see no jumps in height
 * as the masthead moves from fluid to fixed. This actual value takes into
 * account the padding and the top border on the header itself.
 */

.page-head--masthead {
 margin-bottom: 0;
 background: url(/img/css/masthead.jpg) center center #2e2620;
 @include vendor(background-size, cover);
 color: $color-masthead; /* [1] */
 border-top-color: $color-masthead;
 border-bottom-width: 0;
 box-shadow: 0 0 10px rgba(0, 0, 0, 0.1) inset;

 @include media-query(lap-and-up) {
 background-image: url(/img/css/masthead-medium.jpg);
 }

 @include media-query(desk) {
 background-image: url(/img/css/masthead-large.jpg);
 }

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 23 of 73

 > .wrapper { /* [2] */
 position: relative; /* [3] */
 padding-top: 56.25%; /* [4] */

 @media screen and (min-width: 758px) { /* [5] */
 padding-top: 0; /* [6] */
 height: $header-max-height - double($spacing-unit) - $header-border-width; /* [7] */
 }

 }

}

These types of comment allow us to keep all of our documentation in one place
whilst referring to the parts of the ruleset to which they belong.

Preprocessor Comments

Preprocessor Comments

Preprocessor CommentsPreprocessor Comments

With most—if not all—preprocessors, we have the option to write comments
that will not get compiled out into our resulting CSS file. As a rule, use these
comments to document code that would not get written out to that CSS file
either. If you are documenting code which will get compiled, use comments
that will compile also. For example, this is correct:

// Dimensions of the @2x image sprite:
$sprite-width: 920px;
$sprite-height: 212px;

/**
 * 1. Default icon size is 16px.
 * 2. Squash down the retina sprite to display at the correct size.
 */

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 24 of 73

.sprite {
 width: 16px; /* [1] */
 height: 16px; /* [1] */
 background-image: url(/img/sprites/main.png);
 background-size: ($sprite-width / 2) ($sprite-height / 2); /* [2] */
}

We have documented variables—code which will not get compiled into our CSS
file—with preprocessor comments, whereas our CSS—code which will get
compiled into our CSS file—is documented using CSS comments. This means
that we have only the correct and relevant information available to us when
debugging our compiled stylesheets.

Removing Comments

Removing Comments

Removing CommentsRemoving Comments

It should go without saying that no comments should make their way into
production environments—all CSS should be minified, resulting in loss of
comments, before being deployed.

Naming Conventions

Naming Conventions

Naming ConventionsNaming Conventions

Naming conventions in CSS are hugely useful in making your code more strict,
more transparent, and more informative.

A good naming convention will tell you and your team

what type of thing a class does;
where a class can be used;
what (else) a class might be related to.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 25 of 73

The naming convention I follow is very simple: hyphen (-) delimited strings,
with BEM-like naming for more complex pieces of code.

It’s worth noting that a naming convention is not normally useful CSS-side of
development; they really come into their own when viewed in HTML.

Hyphen Delimited

Hyphen Delimited

Hyphen DelimitedHyphen Delimited

All strings in classes are delimited with a hyphen (-), like so:

.page-head {}

.sub-content {}

Camel case and underscores are not used for regular classes; the following are
incorrect:

.pageHead {}

.sub_content {}

BEM-like Naming

BEM-like Naming

BEM-like NamingBEM-like Naming

For larger, more interrelated pieces of UI that require a number of classes, we
use a BEM-like naming convention.

BEM, meaning Block, Element, Modifier, is a front-end methodology coined by
developers working at Yandex. Whilst BEM is a complete methodology, here we
are only concerned with its naming convention. Further, the naming
convention here only is BEM-like; the principles are exactly the same, but the
actual syntax differs slightly.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 26 of 73

BEM splits components’ classes into three groups:

Block: The sole root of the component.
Element: A component part of the Block.
Modifier: A variant or extension of the Block.

To take an analogy (note, not an example):

.person {}

.person__head {}

.person--tall {}

Elements are delimited with two (2) underscores (__), and Modifiers are
delimited by two (2) hyphens (--).

Here we can see that .person {} is the Block; it is the sole root of a discrete
entity. .person__head {} is an Element; it is a smaller part of the .person {}
Block. Finally, .person--tall {} is a Modifier; it is a specific variant of the
.person {} Block.

Starting Context

Starting Context

Starting ContextStarting Context

Your Block context starts at the most logical, self-contained, discrete location.
To continue with our person-based analogy, we’d not have a class like
.room__person {}, as the room is another, much higher context. We’d
probably have separate Blocks, like so:

.room {}

 .room__door {}

.room--kitchen {}

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 27 of 73

.person {}

 .person__head {}

If we did want to denote a .person {} inside a .room {}, it is more correct to
use a selector like .room .person {} which bridges two Blocks than it is to
increase the scope of existing Blocks and Elements.

A more realistic example of properly scoped blocks might look something like
this, where each chunk of code represents its own Block:

.page {}

.content {}

.sub-content {}

.footer {}

 .footer__copyright {}

Incorrect notation for this would be:

.page {}

 .page__content {}

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 28 of 73

 .page__sub-content {}

 .page__footer {}

 .page__copyright {}

It is important to know when BEM scope starts and stops. As a rule, BEM
applies to self-contained, discrete parts of the UI.

Something you need some more help with?

Hire me

More Layers

More Layers

More LayersMore Layers

If we were to add another Element—called, let’s say, .person__eye {}—to
this .person {} component, we would not need to step through every layer of
the DOM. That is to say, the correct notation would be .person__eye {}, and
not .person__head__eye {}. Your classes do not reflect the full paper-trail of
the DOM.

Modifying Elements

Modifying Elements

Modifying ElementsModifying Elements

You can have variants of Elements, and these can be denoted in a number of
ways depending on how and why they are being modified. Carrying on with our
person example, a blue eye might look like this:

.person__eye--blue {}

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 29 of 73

Here we can see we’re directly modifying the eye Element.

Things can get more complex, however. Please excuse the crude analogy, and
let’s imagine we have a face Element that is handsome. The person themselves
isn’t that handsome, so we modify the face Element directly—a handsome face
on a regular person:

.person__face--handsome {}

But what if that person is handsome, and we want to style their face because of
that fact? A regular face on a handsome person:

.person--handsome .person__face {}

Here is one of a few occasions where we’d use a descendant selector to modify
an Element based on a Modifier on the Block.

If using Sass, we would likely write this like so:

.person {}

 .person__face {

 .person--handsome & {}

 }

.person--handsome {}

Note that we do not nest a new instance of .person__face {} inside of
.person--handsome {}; instead, we make use of Sass’ parent selectors to

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 30 of 73

prepend .person--handsome onto the existing .person__face {} selector.
This means that all of our .person__face {}-related rules exist in once place,
and aren’t spread throughout the file. This is general good practice when
dealing with nested code: keep all of your context (e.g. all .person__face {}
code) encapsulated in one location.

Naming Conventions in HTML

Naming Conventions in HTML

Naming Conventions in HTMLNaming Conventions in HTML

As I previously hinted at, naming conventions aren’t necessarily all that useful
in your CSS. Where naming conventions’ power really lies is in your markup.
Take the following, non-naming-conventioned HTML:

<div class="box profile pro-user">

 <p class="bio">...</p>

</div>

How are the classes box and profile related to each other? How are the
classes profile and avatar related to each other? Are they related at all?
Should you be using pro-user alongside bio? Will the classes image and
profile live in the same part of the CSS? Can you use avatar anywhere else?

From that markup alone, it is very hard to answer any of those questions.
Using a naming convention, however, changes all that:

<div class="box profile profile--is-pro-user">

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 31 of 73

 <p class="profile__bio">...</p>

</div>

Now we can clearly see which classes are and are not related to each other, and
how; we know what classes we can’t use outside of the scope of this
component; and we know which classes we may be free to reuse elsewhere.

JavaScript Hooks

JavaScript Hooks

JavaScript HooksJavaScript Hooks

As a rule, it is unwise to bind your CSS and your JS onto the same class in your
HTML. This is because doing so means you can’t have (or remove) one without
(removing) the other. It is much cleaner, much more transparent, and much
more maintainable to bind your JS onto specific classes.

I have known occasions before when trying to refactor some CSS has
unwittingly removed JS functionality because the two were tied to each other—
it was impossible to have one without the other.

Typically, these are classes that are prepended with js-, for example:

<input type="submit" class="btn js-btn" value="Follow" />

This means that we can have an element elsewhere which can carry with style
of .btn {}, but without the behaviour of .js-btn.

data-*

data-*

data-*data-* Attributes

 Attributes

 Attributes Attributes

A common practice is to use data-* attributes as JS hooks, but this is incorrect.
data-* attributes, as per the spec, are used ‘to store custom data private to the

page or application’ (emphasis mine). data-* attributes are designed to store
data, not be bound to.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 32 of 73

Taking It Further

Taking It Further

Taking It FurtherTaking It Further

As previously mentioned, these are very simple naming conventions, and ones
that don’t do much more than denote three distinct groups of class.

I would encourage you to read up on and further look in to your naming
convention in order to provide more functionality—I know it’s something I’m
keen to research and investigate further.

Further Reading

Further Reading

Further ReadingFurther Reading

MindBEMding – getting your head ’round BEM syntax

CSS Selectors

CSS Selectors

CSS SelectorsCSS Selectors

Perhaps somewhat surprisingly, one of the most fundamental, critical aspects
of writing maintainable and scalable CSS is selectors. Their specificity, their
portability, and their reusability all have a direct impact on the mileage we will
get out of our CSS, and the headaches it might bring us.

Selector Intent

Selector Intent

Selector IntentSelector Intent

It is important when writing CSS that we scope our selectors correctly, and
that we’re selecting the right things for the right reasons. Selector Intent is the
process of deciding and defining what you want to style and how you will go
about selecting it. For example, if you are wanting to style your website’s main
navigation menu, a selector like this would be incredibly unwise:

header ul {}

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 33 of 73

This selector’s intent is to style any ul inside any header element, whereas our

intent was to style the site’s main navigation. This is poor Selector Intent: you
can have any number of header elements on a page, and they in turn can
house any number of uls, so a selector like this runs the risk of applying very
specific styling to a very wide number of elements. This will result in having to
write more CSS to undo the greedy nature of such a selector.

A better approach would be a selector like:

.site-nav {}

An unambiguous, explicit selector with good Selector Intent. We are explicitly
selecting the right thing for exactly the right reason.

Poor Selector Intent is one of the biggest reasons for headaches on CSS
projects. Writing rules that are far too greedy—and that apply very specific
treatments via very far reaching selectors—causes unexpected side effects and
leads to very tangled stylesheets, with selectors overstepping their intentions
and impacting and interfering with otherwise unrelated rulesets.

CSS cannot be encapsulated, it is inherently leaky, but we can mitigate some of
these effects by not writing such globally-operating selectors: your selectors
should be as explicit and well reasoned as your reason for wanting to select
something.

Reusability

Reusability

ReusabilityReusability

With a move toward a more component-based approach to constructing UIs,
the idea of reusability is paramount. We want the option to be able to move,
recycle, duplicate, and syndicate components across our projects.

To this end, we make heavy use of classes. IDs, as well as being hugely over-

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 34 of 73

specific, cannot be used more than once on any given page, whereas classes
can be reused an infinite amount of times. Everything you choose, from the
type of selector to its name, should lend itself toward being reused.

Location Independence

Location Independence

Location IndependenceLocation Independence

Given the ever-changing nature of most UI projects, and the move to more
component-based architectures, it is in our interests not to style things based
on where they are, but on what they are. That is to say, our components’
styling should not be reliant upon where we place them—they should remain
entirely location independent.

Let’s take an example of a call-to-action button that we have chosen to style
via the following selector:

.promo a {}

Not only does this have poor Selector Intent—it will greedily style any and
every link inside of a .promo to look like a button—it is also pretty wasteful as
a result of being so locationally dependent: we can’t reuse that button with its
correct styling outside of .promo because it is explicitly tied to that location. A
far better selector would have been:

.btn {}

This single class can be reused anywhere outside of .promo and will always
carry its correct styling. As a result of a better selector, this piece of UI is more
portable, more recyclable, doesn’t have any dependencies, and has much better
Selector Intent. A component shouldn’t have to live in a certain place to look
a certain way.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 35 of 73

Portability

Portability

PortabilityPortability

Reducing, or, ideally, removing, location dependence means that we can move
components around our markup more freely, but how about improving our
ability to move classes around components? On a much lower level, there are
changes we can make to our selectors that make the selectors themselves—as
opposed to the components they create—more portable. Take the following
example:

input.btn {}

This is a qualified selector; the leading input ties this ruleset to only being able
to work on input elements. By omitting this qualification, we allow ourselves
to reuse the .btn class on any element we choose, like an a, for example, or a
button.

Qualified selectors do not lend themselves well to being reused, and every
selector we write should be authored with reuse in mind.

Of course, there are times when you may want to legitimately qualify a selector
—you might need to apply some very specific styling to a particular element
when it carries a certain class, for example:

/**
 * Embolden and colour any element with a class of `.error`.
 */
.error {
 color: red;
 font-weight: bold;
}

/**

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 36 of 73

 * If the element is a `div`, also give it some box-like styling.
 */
div.error {
 padding: 10px;
 border: 1px solid;
}

This is one example where a qualified selector might be justifiable, but I would
still recommend an approach more like:

/**
 * Text-level errors.
 */
.error-text {
 color: red;
 font-weight: bold;
}

/**
 * Elements that contain errors.
 */
.error-box {
 padding: 10px;
 border: 1px solid;
}

This means that we can apply .error-box to any element, and not just a div
—it is more reusable than a qualified selector.

Quasi-Qualified Selectors

Quasi-Qualified Selectors

Quasi-Qualified SelectorsQuasi-Qualified Selectors

One thing that qualified selectors can be useful for is signalling where a class

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 37 of 73

might be expected or intended to be used, for example:

ul.nav {}

Here we can see that the .nav class is meant to be used on a ul element, and
not on a nav. By using quasi-qualified selectors we can still provide that
information without actually qualifying the selector:

/*ul*/.nav {}

By commenting out the leading element, we can still leave it to be read, but
avoid qualifying and increasing the specificity of the selector.

Naming

Naming

NamingNaming

As Phil Karlton once said, ‘There are only two hard things in Computer Science:
cache invalidation and naming things.’

I won’t comment on the former claim here, but the latter has plagued me for
years. My advice with regard to naming things in CSS is to pick a name that is
sensible, but somewhat ambiguous: aim for high reusability. For example,
instead of a class like .site-nav, choose something like .primary-nav; rather
than .footer-links, favour a class like .sub-links.

The differences in these names is that the first of each two examples is tied to
a very specific use case: they can only be used as the site’s navigation or the
footer’s links respectively. By using slightly more ambiguous names, we can
increase our ability to reuse these components in different circumstances.

To quote Nicolas Gallagher:

Tying your class name semantics tightly to the nature of the content has

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 38 of 73

already reduced the ability of your architecture to scale or be easily put to use
by other developers.

That is to say, we should use sensible names—classes like .border or .red are
never advisable—but we should avoid using classes which describe the exact
nature of the content and/or its use cases. Using a class name to describe
content is redundant because content describes itself.

The debate surrounding semantics has raged for years, but it is important that
we adopt a more pragmatic, sensible approach to naming things in order to
work more efficiently and effectively. Instead of focussing on ‘semantics’, look
more closely at sensibility and longevity—choose names based on ease of
maintenance, not for their perceived meaning.

Name things for people; they’re the only things that actually read your classes
(everything else merely matches them). Once again, it is better to strive for
reusable, recyclable classes rather than writing for specific use cases. Let’s take
an example:

/**
 * Runs the risk of becoming out of date; not very maintainable.
 */
.blue {
 color: blue;
}

/**
 * Depends on location in order to be rendered properly.
 */
.header span {
 color: blue;
}

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 39 of 73

/**
 * Too specific; limits our ability to reuse.
 */
.header-color {
 color: blue;
}

/**
 * Nicely abstracted, very portable, doesn’t risk becoming out of date.
 */
.highlight-color {
 color: blue;
}

It is important to strike a balance between names that do not literally describe
the style that the class brings, but also ones that do not explicitly describe
specific use cases. Instead of .home-page-panel, choose .masthead; instead of
.site-nav, favour .primary-nav; instead of .btn-login, opt for .btn-
primary.

Naming UI Components

Naming UI Components

Naming UI ComponentsNaming UI Components

Naming components with agnosticism and reusability in mind really helps
developers construct and modify UIs much more quickly, and with far less
waste. However, it can sometimes be beneficial to provide more specific or
meaningful naming alongside the more ambiguous class, particularly when
several agnostic classes come together to form a more complex and specific
component that might benefit from having a more meaningful name. In this
scenario, we augment the classes with a data-ui-component attribute which
houses a more specific name, for example:

<ul class="tabbed-nav" data-ui-component="Main Nav">

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 40 of 73

Here we have the benefits of a highly reusable class name which does not
describe—and, therefore, tie itself to—a specific use case, and added meaning
via our data-ui-component attribute. The data-ui-component’s value can
take any format you wish, like title case:

<ul class="tabbed-nav" data-ui-component="Main Nav">

Or class-like:

<ul class="tabbed-nav" data-ui-component="main-nav">

Or namespaced:

<ul class="tabbed-nav" data-ui-component="nav-main">

The implementation is largely personal preference, but the concept still
remains: Add any useful or specific meaning via a mechanism that will not
inhibit your and your team’s ability to recycle and reuse CSS.

It looks like you’re enjoying these guidelines…

Support Them

Selector Performance

Selector Performance

Selector PerformanceSelector Performance

A topic which is—with the quality of today’s browsers—more interesting than
it is important, is selector performance. That is to say, how quickly a browser
can match the selectors your write in CSS up with the nodes it finds in the

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 41 of 73

DOM.

Generally speaking, the longer a selector is (i.e. the more component parts) the
slower it is, for example:

body.home div.header ul {}

…is a far less efficient selector than:

.primary-nav {}

This is because browsers read CSS selectors right-to-left. A browser will read
the first selector as

find all ul elements in the DOM;
now check if they live anywhere inside an element with a class of
.header;
next check that .header class exists on a div element;
now check that that all lives anywhere inside any elements with a class
of .home;
finally, check that .home exists on a body element.

The second, in contrast, is simply a case of the browser reading

find all the elements with a class of .primary-nav.

To further compound the problem, we are using descendant selectors (e.g.
.foo .bar {}). The upshot of this is that a browser is required to start with
the rightmost part of the selector (i.e. .bar) and keep looking up the DOM
indefinitely until it finds the next part (i.e. .foo). This could mean stepping up
the DOM dozens of times until a match is found.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 42 of 73

This is just one reason why nesting with preprocessors is often a false
economy; as well as making selectors unnecessarily more specific, and
creating location dependency, it also creates more work for the browser.

By using a child selector (e.g. .foo > .bar {}) we can make the process much
more efficient, because this only requires the browser to look one level higher
in the DOM, and it will stop regardless of whether or not it found a match.

The Key Selector

The Key Selector

The Key SelectorThe Key Selector

Because browsers read selectors right-to-left, the rightmost selector is often
critical in defining a selector’s performance: this is called the key selector.

The following selector might appear to be highly performant at first glance. It
uses an ID which is nice and fast, and there can only ever be one on a page, so
surely this will be a nice and speedy lookup—just find that one ID and then
style everything inside of it:

#foo * {}

The problem with this selector is that the key selector (*) is very, very far
reaching. What this selector actually does is find every single node in the DOM
(even <title>, <link>, and <head> elements; everything) and then looks to
see if it lives anywhere at any level within #foo. This is a very, very expensive
selector, and should most likely be avoided or rewritten.

Thankfully, by writing selectors with good Selector Intent, we are probably
avoiding inefficient selectors by default; we are very unlikely to have greedy
key selectors if we’re targeting the right things for the right reason.

That said, however, CSS selector performance should be fairly low on your list
of things to optimise; browsers are fast, and are only ever getting faster, and it
is only on notable edge cases that inefficient selectors would be likely to pose a

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 43 of 73

problem.

As well as their own specific issues, nesting, qualifying, and poor Selector
Intent all contribute to less efficient selectors.

General Rules

General Rules

General RulesGeneral Rules

Your selectors are fundamental to writing good CSS. To very briefly sum up the
above sections:

Select what you want explicitly, rather than relying on circumstance or
coincidence. Good Selector Intent will rein in the reach and leak of your
styles.
Write selectors for reusability, so that you can work more efficiently
and reduce waste and repetition.
Do not nest selectors unnecessarily, because this will increase
specificity and affect where else you can use your styles.
Do not qualify selectors unnecessarily, as this will impact the number
of different elements you can apply styles to.
Keep selectors as short as possible, in order to keep specificity down
and performance up.

Focussing on these points will keep your selectors a lot more sane and easy to
work with on changing and long-running projects.

Further Reading

Further Reading

Further ReadingFurther Reading

Shoot to kill; CSS selector intent
‘Scope’ in CSS
Keep your CSS selectors short
About HTML semantics and front-end architecture
Naming UI components in OOCSS
Writing efficient CSS selectors

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 44 of 73

Specificity

Specificity

SpecificitySpecificity

As we’ve seen, CSS isn’t the most friendly of languages: globally operating,
very leaky, dependent on location, hard to encapsulate, based on inheritance…
But! None of that even comes close to the horrors of specificity.

No matter how well considered your naming, regardless of how perfect your
source order and cascade are managed, and how well you’ve scoped your
rulesets, just one overly-specific selector can undo everything. It is a gigantic
curveball, and undermines CSS’ very nature of the cascade, inheritance, and
source order.

The problem with specificity is that it sets precedents and trumps that cannot
simply be undone. If we take a real example that I was responsible for some
years ago:

#content table {}

Not only does this exhibit poor Selector Intent—I didn’t actually want every
table in the #content area, I wanted a specific type of table that just
happened to live there—it is a hugely over-specific selector. This became
apparent a number of weeks later, when I needed a second type of table:

#content table {}

/**
 * Uh oh! My styles get overwritten by `#content table {}`.
 */
.my-new-table {}

The first selector was trumping the specificity of the one defined after it,

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 45 of 73

working against CSS’ source-order based application of styles. In order to
remedy this, I had two main options. I could

1. refactor my CSS and HTML to remove that ID;
2. write a more specific selector to override it.

Unfortunately, refactoring would have taken a long time; it was a mature
product and the knock-on effects of removing this ID would have been a more
substantial business cost than the second option: just write a more specific
selector.

#content table {}

#content .my-new-table {}

Now I have a selector that is even more specific still! And if I ever want to
override this one, I will need another selector of at least the same specificity
defined after it. I’ve started on a downward spiral.

Specificity can, among other things,

limit your ability to extend and manipulate a codebase;
interrupt and undo CSS’ cascading, inheriting nature;
cause avoidable verbosity in your project;
prevent things from working as expected when moved into different
environments;
lead to serious developer frustration.

All of these issues are greatly magnified when working on a larger project with
a number of developers contributing code.

Keep It Low at All Times

Keep It Low at All Times

Keep It Low at All TimesKeep It Low at All Times

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 46 of 73

The problem with specificity isn’t necessarily that it’s high or low; it’s the fact
it is so variant and that it cannot be opted out of: the only way to deal with it is
to get progressively more specific—the notorious specificity wars we looked at
above.

One of the single, simplest tips for an easier life when writing CSS—
particularly at any reasonable scale—is to keep always try and keep specificity
as low as possible at all times. Try to make sure there isn’t a lot of variance
between selectors in your codebase, and that all selectors strive for as low a
specificity as possible.

Doing so will instantly help you tame and manage your project, meaning that
no overly-specific selectors are likely to impact or affect anything of a lower
specificity elsewhere. It also means you’re less likely to need to fight your way
out of specificity corners, and you’ll probably also be writing much smaller
stylesheets.

Simple changes to the way we work include, but are not limited to,

not using IDs in your CSS;
not nesting selectors;
not qualifying classes;
not chaining selectors.

Specificity can be wrangled and understood, but it is safer just to avoid it
entirely.

IDs in CSS

IDs in CSS

IDs in CSSIDs in CSS

If we want to keep specificity low, which we do, we have one really quick-win,
simple, easy-to-follow rule that we can employ to help us: avoid using IDs in
CSS.

Not only are IDs inherently non-reusable, they are also vastly more specific

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 47 of 73

than any other selector, and therefore become specificity anomalies. Where the
rest of your selectors are relatively low specificity, your ID-based selectors are,
comparatively, much, much higher.

In fact, to highlight the severity of this difference, see how one thousand
chained classes cannot override the specificity of a single ID:
jsfiddle.net/0yb7rque. (Please note that in Firefox you may see the text rendering in blue:

this is a known bug, and an ID will be overridden by 256 chained classes.)

N.B. It is still perfectly okay to use IDs in HTML and JavaScript; it is only in CSS that they prove

troublesome.

It is often suggested that developers who choose not to use IDs in CSS merely
‘don’t understand how specificity works’. This is as incorrect as it is offensive: no
matter how experienced a developer you are, this behaviour cannot be
circumvented; no amount of knowledge will make an ID less specific.

Opting into this way of working only introduces the chance of problems
occurring further down the line, and—particularly when working at scale—all
efforts should be made to avoid the potential for problems to arise. In a
sentence:

It is just not worth introducing the risk.

Nesting

Nesting

NestingNesting

We’ve already looked at how nesting can lead to location dependent and
potentially inefficient code, but now it’s time to take a look at another of its
pitfalls: it makes selectors more specific.

When we talk about nesting, we don’t necessarily mean preprocessor nesting,
like so:

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 48 of 73

.foo {

 .bar {}

}

We’re actually talking about descendant or child selectors; selectors which rely
on a thing within a thing. That could look like any one of the following:

/**
 * An element with a class of `.bar` anywhere inside an element with a class of
 * `.foo`.
 */
.foo .bar {}

/**
 * An element with a class of `.module-title` directly inside an element with a
 * class of `.module`.
 */
.module > .module-title {}

/**
 * Any `li` element anywhere inside a `ul` element anywhere inside a `nav`
 * element
 */
nav ul li {}

Whether you arrive at this CSS via a preprocessor or not isn’t particularly
important, but it is worth noting that preprocessors tout this as a feature,
where is actually to be avoided wherever possible.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 49 of 73

Generally speaking, each part in a compound selector adds specificity. Ergo,
the fewer parts to a compound selector then the lower its overall specificity,
and we always want to keep specificity low. To quote Jonathan Snook:

…whenever declaring your styles, use the least number of selectors required to
style an element.

Let’s look at an example:

.widget {
 padding: 10px;
}

 .widget > .widget__title {
 color: red;
 }

To style an element with a class of .widget__title, we have a selector that is
twice as specific as it needs to be. That means that if we want to make any
modifications to .widget__title, we’ll need another at-least-equally specific
selector:

.widget { ... }

 .widget > .widget__title { ... }

 .widget > .widget__title--sub {
 color: blue;
 }

Not only is this entirely avoidable—we caused this problem ourselves—we
have a selector that is literally double the specificity it needs to be. We used

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 50 of 73

200% of the specificity actually required. And not only that, but this also leads
to needless verbosity in our code—more to send over the wire.

As a rule, if a selector will work without it being nested then do not nest it.

Scope

Scope

ScopeScope

One possible advantage of nesting—which, unfortunately, does not outweigh
the disadvantages of increased specificity—is that it provides us with a
namespace of sorts. A selector like .widget .title scopes the styling of
.title to an element that only exists inside of an element carrying a class of
.widget.

This goes some way to providing our CSS with scope and encapsulation, but
does still mean that our selectors are twice as specific as they need to be. A
better way of providing this scope would be via a namespace—which we
already have in the form of BEM-like Naming—which does not lead to an
unnecessary increase in specificity.

Now we have better scoped CSS with minimal specificity—the best of both
worlds.

Further Reading

Further Reading

Further ReadingFurther Reading

‘Scope’ in CSS

!important

!important

!important!important

The word !important sends shivers down the spines of almost all front-end
developers. !important is a direct manifestation of problems with specificity;
it is a way of cheating your way out of specificity wars, but usually comes at a
heavy price. It is often viewed as a last resort—a desperate, defeated stab at
patching over the symptoms of a much bigger problem with your code.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 51 of 73

The general rule is that !important is always a bad thing, but, to quote Jamie
Mason:

Rules are the children of principles.

That is to say, a single rule is a simple, black-and-white way of adhering to a
much larger principle. When you’re starting out, the rule ‘never use
!important’ is a good one.

However, once you begin to grow and mature as a developer, you begin to
understand that the principle behind that rule is simply about keeping
specificity low. You’ll also learn when and where the rules can be bent…

!important does have a place in CSS projects, but only if used sparingly and
proactively.

Proactive use of !important is when it is used before you’ve encountered any
specificity problems; when it is used as a guarantee rather than as a fix. For
example:

.one-half {
 width: 50% !important;
}

.hidden {
 display: none !important;
}

These two helper, or utility, classes are very specific in their intentions: you
would only use them if you wanted something to be rendered at 50% width or
not rendered at all. If you didn’t want this behaviour, you would not use these
classes, therefore whenever you do use them you will definitely want them to
win.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 52 of 73

Here we proactively apply !important to ensure that these styles always win.
This is correct use of !important to guarantee that these trumps always work,
and don’t accidentally get overridden by something else more specific.

Incorrect, reactive use of !important is when it is used to combat specificity
problems after the fact: applying !important to declarations because of poorly
architected CSS. For example, let’s imagine we have this HTML:

<div class="content">
 <h2 class="heading-sub">...</h2>
</div>

…and this CSS:

.content h2 {
 font-size: 2em;
}

.heading-sub {
 font-size: 1.5em !important;
}

Here we can see how we’ve used !important to force our .heading-sub {}
styles to reactively override our .content h2 {} selector. This could have
been circumvented by any number of things, including using better Selector
Intent, or avoiding nesting.

In these situations, it is preferable that you investigate and refactor any
offending rulesets to try and bring specificity down across the board, as
opposed to introducing such specificity heavyweights.

Only use !important proactively, not reactively.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 53 of 73

Hacking Specificity

Hacking Specificity

Hacking SpecificityHacking Specificity

With all that said on the topic of specificity, and keeping it low, it is inevitable
that we will encounter problems. No matter how hard we try, and how
conscientious we are, there will always be times that we need to hack and
wrangle specificity.

When these situations do arise, it is important that we handle the hacks as
safely and elegantly as possible.

In the event that you need to increase the specificity of a class selector, there
are a number of options. We could nest the class inside something else to bring
its specificity up. For example, we could use .header .site-nav {} to bring
up the specificity of a simple .site-nav {} selector.

The problem with this, as we’ve discussed, is that it introduces location
dependency: these styles will only work when the .site-nav component is in
the .header component.

Instead, we can use a much safer hack that will not impact this component’s
portability: we can chain that class with itself:

.site-nav.site-nav {}

This chaining doubles the specificity of the selector, but does not introduce any
dependency on location.

In the event that we do, for whatever reason, have an ID in our markup that we
cannot replace with a class, select it via an attribute selector as opposed to an
ID selector. For example, let’s imagine we have embedded a third-party widget
on our page. We can style the widget via the markup that it outputs, but we
have no ability to edit that markup ourselves:

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 54 of 73

<div id="third-party-widget">
 ...
</div>

Even though we know not to use IDs in CSS, what other option do we have? We
want to style this HTML but have no access to it, and all it has on it is an ID.

We do this:

[id="third-party-widget"] {}

Here we are selecting based on an attribute rather than an ID, and attribute
selectors have the same specificity as a class. This allows us to style based on
an ID, but without introducing its specificity.

Do keep in mind that these are hacks, and should not be used unless you have
no better alternative.

Further Reading

Further Reading

Further ReadingFurther Reading

Hacks for dealing with specificity

Architectural Principles

Architectural Principles

Architectural PrinciplesArchitectural Principles

You would be forgiven for thinking that an architecture for CSS is a somewhat
grandiose and unnecessary concept: why would something so simple, so
straightforward, need something as complex or considered as an architecture?!

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 55 of 73

Well, as we’ve seen, CSS’ simplicity, its looseness, and its unruly nature mean
that the best way of managing (read, taming) it at any reasonable scale is
through a strict and specific architecture. A solid architecture can help us
control our specificity, enforce naming conventions, manage our source order,
create a sane development environment, and generally make managing our
CSS projects a lot more consistent and comfortable.

There is no tool, no preprocessor, no magic bullet, that will make your CSS
better on its own: a developer’s best tool when working with such a loose
syntax is self-discipline, conscientiousness, and diligence, and a well-defined
architecture will help enforce and facilitate these traits.

Architectures are large, overarching, principle-led collections of smaller
conventions which come together to provide a managed environment in which
code is written and maintained. Architectures are typically quite high level, and
leave implementation details—such as naming conventions or syntax and
formatting, for example—to the team implementing it.

Most architectures are usually based around existing design patterns and
paradigms, and, more often than not, these paradigms were born of computer
scientists and software engineers. For all CSS isn’t ‘code’, and doesn’t exhibit
many traits that programming languages do, we find that we can apply some
of these same principles to our own work.

In this section, we’ll take a look at some of these design patterns and
paradigms, and how we can use them to reduce code—and increase code reuse
—in our CSS projects.

High-level Overview

High-level Overview

High-level OverviewHigh-level Overview

At a very high-level, your architecture should help you

provide a consistent and sane environment;
accommodate change;

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 56 of 73

grow and scale your codebase;
promote reuse and efficiency;
increase productivity.

Typically, this will mean a class-based and componentised architecture, split
up into manageable modules, probably using a preprocessor. Of course, there is
far more to an architecture than that, so let’s look at some principles…

Object-orientation

Object-orientation

Object-orientationObject-orientation

Object-orientation is a programming paradigm that breaks larger programs up
into smaller, in(ter)dependent objects that all have their own roles and
responsibilities. From Wikipedia:

Object-oriented programming (OOP) is a programming paradigm that
represents the concept of ‘objects’ […] which are usually instances of classes,
[and] are used to interact with one another to design applications and
computer programs.

When applied to CSS, we call it object-oriented CSS, or OOCSS. OOCSS was
coined and popularised by Nicole Sullivan, whose Media Object has become the
poster child of the methodology.

OOCSS deals with the separation of UIs into structure and skin: breaking UI
components into their underlying structural forms, and layering their cosmetic
forms on separately. This means that we can recycle common and recurring
design patterns very cheaply without having to necessarily recycle their specific
implementation details at the same time. OOCSS promotes reuse of code, which
makes us quicker, as well as keeping the size of our codebase down.

Structural aspects can be thought of like skeletons; common, recurring frames
that provide design-free constructs known as objects and abstractions. Objects
and abstractions are simple design patterns that are devoid of any cosmetics;
we abstract out the shared structural traits from a series of components into a

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 57 of 73

generic object.

Skin is a layer that we (optionally) add to our structure in order to give objects
and abstractions a specific look-and-feel. Let’s look at an example:

/**
 * A simple, design-free button object. Extend this object with a `.btn--*` skin
 * class.
 */
.btn {
 display: inline-block;
 padding: 1em 2em;
 vertical-align: middle;
}

/**
 * Positive buttons’ skin. Extends `.btn`.
 */
.btn--positive {
 background-color: green;
 color: white;
}

/**
 * Negative buttons’ skin. Extends `.btn`.
 */
.btn--negative {
 background-color: red;
 color: white;
}

Above, we can see how the .btn {} class simply provides structural styling to

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 58 of 73

an element, and doesn’t concern itself with any cosmetics. We supplement the
.btn {} object with a second class, such as .btn--negative {} in order to
give that DOM node specific cosmetics:

<button class="btn btn--negative">Delete</button>

Favour the multiple-class approach over using something like @extend: using
multiple classes in your markup—as opposed to wrapping the classes up into
one using a preprocessor—

gives you a better paper-trail in your markup, and allows you to see
quickly and explicitly which classes are acting on a piece of HTML;
allows for greater composition in that classes are not tightly bound to
other styles in your CSS.

Whenever you are building a UI component, try and see if you can break it into
two parts: one for structural styles (paddings, layout, etc.) and another for skin
(colours, typefaces, etc.).

Further Reading

Further Reading

Further ReadingFurther Reading

The media object saves hundreds of lines of code
The flag object
Naming UI components in OOCSS

The Single Responsibility Principle

The Single Responsibility Principle

The Single Responsibility PrincipleThe Single Responsibility Principle

The single responsibility principle is a paradigm that, very loosely, states that all
pieces of code (in our case, classes) should focus on doing one thing and one
thing only. More formally:

…the single responsibility principle states that every context (class, function,
variable, etc.) should have a single responsibility, and that responsibility

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 59 of 73

should be entirely encapsulated by the context.

What this means for us is that our CSS should be composed of a series of much
smaller classes that focus on providing very specific and limited functionality.
This means that we need to decompose UIs into their smallest component
pieces that each serve a single responsibility; they all do just one job, but can
be very easily combined and composed to make much more versatile and
complex constructs. Let’s take some example CSS that does not adhere to the
single responsibility principle:

.error-message {
 display: block;
 padding: 10px;
 border-top: 1px solid #f00;
 border-bottom: 1px solid #f00;
 background-color: #fee;
 color: #f00;
 font-weight: bold;
}

.success-message {
 display: block;
 padding: 10px;
 border-top: 1px solid #0f0;
 border-bottom: 1px solid #0f0;
 background-color: #efe;
 color: #0f0;
 font-weight: bold;
}

Here we can see that—despite being named after one very specific use-case—
these classes are handling quite a lot: layout, structure, and cosmetics. We also
have a lot of repetition. We need to refactor this in order to abstract out some

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 60 of 73

shared objects (OOCSS) and bring it more inline with the single responsibility
principle. We can break these two classes out into four much smaller
responsibilities:

.box {
 display: block;
 padding: 10px;
}

.message {
 border-style: solid;
 border-width: 1px 0;
 font-weight: bold;
}

.message--error {
 background-color: #fee;
 color: #f00;
}

.message--success {
 background-color: #efe;
 color: #0f0;
}

Now we have a general abstraction for boxes which can live, and be used,
completely separately from our message component, and we have a base
message component that can be extended by a number of smaller
responsibility classes. The amount of repetition has been greatly reduced, and
our ability to extend and compose our CSS has been greatly increased. This is a
great example of OOCSS and the single responsibility principle working in
tandem.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 61 of 73

By focussing on single responsibilities, we can give our code much more
flexibility, and extending components’ functions becomes very simple when
sticking to the open/closed principle, which we’re going to look at next.

Further Reading

Further Reading

Further ReadingFurther Reading

The single responsibility principle applied to CSS

The Open/Closed Principle

The Open/Closed Principle

The Open/Closed PrincipleThe Open/Closed Principle

The open/closed principle, in my opinion, is rather poorly named. It is poorly
named because 50% of the vital information is omitted from its title. The
open/closed principle states that

[s]oftware entities (classes, modules, functions, etc.) should be open for
extension, but closed for modification.

See? The most important words—extension and modification—are completely
missing from the name, which isn’t very useful at all.

Once you have trained yourself to remember what the words open and closed
actually relate to, you’ll find that open/closed principle remarkably simple: any
additions, new functionality, or features we add to our classes should be added
via extension—we should not modify these classes directly. This really trains us
to write bulletproof single responsibilities: because we shouldn’t modify
objects and abstractions directly, we need to make sure we get them as simple
as possible the first time. This means that we should never need to actually
change an abstraction—we’d simply stop using it—but any slight variants of it
can be made very easily by extending it.

Let’s take an example:

.box {

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 62 of 73

 display: block;
 padding: 10px;
}

.box--large {
 padding: 20px;
}

Here we can see that the .box {} object is incredibly simple: we’ve stripped it
right back into one very small and very focussed responsibility. To modify that
box, we extend it with another class; .box--large {}. Here the .box {} class
is closed to modification, but open to being extended.

An incorrect way of achieving the same might look like this:

.box {
 display: block;
 padding: 10px;
}

.content .box {
 padding: 20px;
}

Not only is this overly specific, locationally dependent, and potentially
displaying poor Selector Intent, we are modifying the .box {} directly. We
should rarely—if ever—find an object or abstraction’s class as a key selector in
a compound selector.

A selector like .content .box {} is potentially troublesome because

it forces all .box components into that style when placed inside of

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 63 of 73

.content, which means the modification is dictated to developers,
whereas developers should be allowed to opt into changes explicitly;
the .box style is now unpredictable to developers; the single
responsibility no longer exists because nesting the selector produces a
forced caveat.

All modifications, additions, and changes should always be opt-in, not
mandatory. If you think something might need a slight adjustment to take it
away from the norm, provide another class which adds this functionality.

When working in a team environment, be sure to write API-like CSS; always
ensure that existing classes remain backward compatible (i.e. no changes at
their root) and provide new hooks to bring in new features. Changing the root
object, abstraction, or component could have huge knock-on effects for
developers making use of that code elsewhere, so never modify existing code
directly.

Exceptions may present themselves when it transpires that a root object does
need a rewrite or refactor, but it is only in these specific cases that you should
modify code. Remember: open for extension; closed for modification.

Further Reading

Further Reading

Further ReadingFurther Reading

The open/closed principle applied to CSS

DRY

DRY

DRYDRY

DRY, which stands for Don’t Repeat Repeat Yourself, is a micro-principle used in
software development which aims to keep the repetition of key information to
a minimum. Its formal definition is that

[e]very piece of knowledge must have a single, unambiguous, authoritative
representation within a system.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 64 of 73

Although a very simple principle—in principle—DRY is often misinterpreted as
the necessity to never repeat the exact same thing twice at all in a project. This
is impractical and usually counterproductive, and can lead to forced
abstractions, over-thought and -engineered code, and unusual dependencies.

The key isn’t to avoid all repetition, but to normalise and abstract meaningful
repetition. If two things happen to share the same declarations coincidentally,
then we needn’t DRY anything out; that repetition is purely circumstantial and
cannot be shared or abstracted. For example:

.btn {
 display: inline-block;
 padding: 1em 2em;
 font-weight: bold;
}

[...]

.page-title {
 font-size: 3rem;
 line-height: 1.4;
 font-weight: bold;
}

[...]

 .user-profile__title {
 font-size: 1.2rem;
 line-height: 1.5;
 font-weight: bold;
 }

From the above code, we can reasonably deduce that the font-weight: bold;

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 65 of 73

declaration appears three times purely coincidentally. To try and create an
abstraction, mixin, or @extend directive to cater for this repetition would be
overkill, and would tie these three rulesets together based purely on
circumstance.

However, imagine we’re using a web-font that requires font-weight: bold;
to be declared every time the font-family is:

.btn {
 display: inline-block;
 padding: 1em 2em;
 font-family: "My Web Font", sans-serif;
 font-weight: bold;
}

[...]

.page-title {
 font-size: 3rem;
 line-height: 1.4;
 font-family: "My Web Font", sans-serif;
 font-weight: bold;
}

[...]

 .user-profile__title {
 font-size: 1.2rem;
 line-height: 1.5;
 font-family: "My Web Font", sans-serif;
 font-weight: bold;
 }

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 66 of 73

Here we’re repeating a more meaningful snippet of CSS; these two declarations
have to always be declared together. In this instance, we probably would DRY
out our CSS.

I would recommend using a mixin over @extend here because, even though the
two declarations are thematically grouped, the rulesets themselves are still
separate, unrelated entities: to use @extend would be to physically group these
unrelated rulesets together in our CSS, thus making the unrelated related.

Our mixin:

@mixin my-web-font() {
 font-family: "My Web Font", sans-serif;
 font-weight: bold;
}

.btn {
 display: inline-block;
 padding: 1em 2em;
 @include my-web-font();
}

[...]

.page-title {
 font-size: 3rem;
 line-height: 1.4;
 @include my-web-font();
}

[...]

 .user-profile__title {

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 67 of 73

 font-size: 1.2rem;
 line-height: 1.5;
 @include my-web-font();
 }

Now the two declarations only exist once, meaning we’re not repeating
ourselves. If we ever switch out our web-font, or move to a font-weight:
normal; version, we only need to make that change in one place.

In short, only DRY code that is actually, thematically related. Do not try to
reduce purely coincidental repetition: duplication is better than the wrong
abstraction.

Further Reading

Further Reading

Further ReadingFurther Reading

Writing DRYer vanilla CSS

Composition over Inheritance

Composition over Inheritance

Composition over InheritanceComposition over Inheritance

Now that we’re used to spotting abstractions and creating single
responsibilities, we should be in a great position to start composing more
complex composites from a series of much smaller component parts. Nicole
Sullivan likens this to using Lego; tiny, single responsibility pieces which can
be combined in a number of different quantities and permutations to create a
multitude of very different looking results.

This idea of building through composition is not a new one, and is often
referred to as composition over inheritance. This principle suggests that larger
systems should be composed from much smaller, individual parts, rather than
inheriting behaviour from a much larger, monolithic object. This should keep
your code decoupled—nothing inherently relies on anything else.

Composition is a very valuable principle for an architecture to make use of,

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 68 of 73

particularly considering the move toward component-based UIs. It will mean
you can more easily recycle and reuse functionality, as well rapidly construct
larger parts of UI from a known set of composable objects. Think back to our
error message example in the Single Responsibility Principle section; we
created a complete UI component by composing a number of much smaller and
unrelated objects.

The Separation of Concerns

The Separation of Concerns

The Separation of ConcernsThe Separation of Concerns

The separation of concerns is a principle which, at first, sounds a lot like the
single responsibility principle. The separation of concerns states that code
should be broken up

into distinct sections, such that each section addresses a separate concern. A
concern is a set of information that affects the code of a computer program. […]
A program that embodies SoC well is called a modular program.

Modular is a word we’re probably used to; the idea of breaking UIs and CSS
into much smaller, composable pieces. The separation of concerns is just a
formal definition which covers the concepts of modularity and encapsulation
in code. In CSS this means building individual components, and writing code
which only focusses itself on one task at a time.

The term was coined by Edsger W. Dijkstra, who rather elegantly said:

Let me try to explain to you, what to my taste is characteristic for all intelligent
thinking. It is, that one is willing to study in depth an aspect of one’s subject
matter in isolation for the sake of its own consistency, all the time knowing
that one is occupying oneself only with one of the aspects. We know that a
program must be correct and we can study it from that viewpoint only; we also
know that it should be efficient and we can study its efficiency on another day,
so to speak. In another mood we may ask ourselves whether, and if so: why, the
program is desirable. But nothing is gained—on the contrary!—by tackling
these various aspects simultaneously. It is what I sometimes have called ‘the

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 69 of 73

separation of concerns’, which, even if not perfectly possible, is yet the only
available technique for effective ordering of one’s thoughts, that I know of. This
is what I mean by ‘focusing one’s attention upon some aspect’: it does not
mean ignoring the other aspects, it is just doing justice to the fact that from this
aspect’s point of view, the other is irrelevant. It is being one- and multiple-
track minded simultaneously.

Beautiful. The idea here is to focus fully on one thing at once; build one thing
to do its job very well whilst paying as little attention as possible to other
facets of your code. Once you have addressed and built all these separate
concerns in isolation—meaning they’re probably very modular, decoupled, and
encapsulated—you can begin bringing them together into a larger project.

A great example is layout. If you are using a grid system, all of the code
pertaining to layout should exist on its own, without including anything else.
You’ve written code that handles layout, and that’s it:

<div class="layout">

 <div class="layout__item two-thirds">
 </div>

 <div class="layout__item one-third">
 </div>

</div>

You will now need to write new, separate code to handle what lives inside of
that layout:

<div class="layout">

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 70 of 73

 <div class="layout__item two-thirds">
 <section class="content">
 ...
 </section>
 </div>

 <div class="layout__item one-third">
 <section class="sub-content">
 ...
 </section>
 </div>

</div>

The separation of concerns allows you to keep code self-sufficient, ignorant,
and ultimately a lot more maintainable. Code which adheres to the separation
of concerns can be much more confidently modified, edited, extended, and
maintained because we know how far its responsibilities reach. We know that
modifying layout, for example, will only ever modify layout—nothing else.

The separation of concerns increases reusability and confidence whilst
reducing dependency.

Misconceptions

Misconceptions

MisconceptionsMisconceptions

There are, I feel, a number of unfortunate misconceptions surrounding the
separation of concerns when applied to HTML and CSS. They all seem to
revolve around some format of:

Using classes for CSS in your markup breaks the separation of concerns.

Unfortunately, this is simply not true. The separation of concerns does exist in
the context of HTML and CSS (and JS), but not in the way a lot of people seem

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 71 of 73

to believe.

The separation of concerns when applied to front-end code is not about
classes-in-HTML-purely-for-styling-hooks-blurring-the-lines-between-
concerns; it is about the very fact that we are using different languages for
markup and styling at all.

Back before CSS was widely adopted, we’d use tables to lay content out, and
font elements with color attributes to provide cosmetic styling. The problem
here is that HTML was being used to create content and also to style it; there
was no way of having one without the other. This was a complete lack of
separation of concerns, which was a problem. CSS’ job was to provide a
completely new syntax to apply this styling, allowing us to separate our
content and style concerns across two technologies.

Another common argument is that ‘putting classes in your HTML puts style
information in your markup’.

So, in a bid to circumvent this, people adopt selectors that might look a little
like this:

body > header:first-of-type > nav > ul > li > a {
}

This CSS—presumably to style our site’s main nav—has the usual problems of
location dependency, poor Selector Intent, and high specificity, but it also
manages to do exactly what developers are trying to avoid, only in the opposite
direction: it puts DOM information in your CSS. Aggressive attempts to avoid
putting any style hints or hooks in markup only lead to overloading stylesheets
with DOM information.

In short: having classes in your markup does not violate the separation of
concerns. Classes merely act as an API to link two separate concerns together.

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 72 of 73

The simplest way to separate concerns is to write well formed HTML and well
formed CSS, and link to two together with sensible, judicious use of classes.

Something you need some more help with?

Hire me

2.2.4

Last updated: 25 June, 2015

© 2014 Harry Roberts

http://cssguidelin.es/ 3/11/16, 12:57 PM
Page 73 of 73

